Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates
نویسندگان
چکیده
Amechanically rugged form of stretchable electronics can be achieved through integration of functional materials and devices with composite substrates consisting of an ultralow modulus silicone adhesive layer on a strain-limiting fabric framework. The resulting system is sufficiently soft to enable extreme levels of deformation and non-invasive use on the skin, yet sufficiently robust for repetitive application/detachment. This letter introduces theoretical and experimental studies of mechanical designs, with optimization for a representative island-bridge device configuration to yield high levels of elastic stretchability. The physics of prestrain conversion and its role in enhancing the stretchability are systematically explored. © 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring.
Research in stretchable electronics involves fundamental scientific topics relevant to applications with importance in human healthcare. Despite significant progress in active components, routes to mechanically robust construction are lacking. Here, we introduce materials and composite designs for thin, breathable, soft electronics that can adhere strongly to the skin, with the ability to be ap...
متن کاملMechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment
Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable material...
متن کاملStretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates
We report on semi-transparent stretchable Ag films coated on a wavy-patterned polydimethylsiloxane (PDMS) substrate for use as stretchable electrodes for stretchable and transparent electronics. To improve the mechanical stretchability of the Ag films, we optimized the wavy-pattern of the PDMS substrate as a function of UV-ozone treatment time and pre-strain of the PDMS substrate. In addition, ...
متن کاملControlled 3D buckling of silicon nanowires for stretchable electronics.
Silicon (Si) nanowire (NW) coils were fabricated on elastomeric substrates by a controlled buckling process. Si NWs were first transferred onto prestrained and ultraviolet/ozone (UVO)-treated poly(dimethylsiloxane) (PDMS) substrates and buckled upon release of the prestrain. Two buckling modes (the in-plane wavy mode and the three-dimensional coiled mode) were found; a transition between them w...
متن کاملDesign of Strain-Limiting Substrate Materials for Stretchable and Flexible Electronics.
Recently developed classes of electronics for biomedical applications exploit substrates that offer low elastic modulus and high stretchability, to allow intimate, mechanically biocompatible integration with soft biological tissues. A challenge is that such substrates do not generally offer protection of the electronics from high peak strains that can occur upon large-scale deformation, thereby...
متن کامل